Shortcuts

Source code for torch.fx.symbolic_trace

import inspect
from types import CodeType, FunctionType
from typing import Any, Dict, Optional, Tuple, List, Callable, Union
import torch
from torch._C import ScriptObject  # type: ignore

from .node import Argument
from .graph import Graph
from .graph_module import GraphModule
from .proxy import TracerBase

HAS_VARSTUFF = inspect.CO_VARARGS | inspect.CO_VARKEYWORDS

def _patch_function(fn: FunctionType, nargs: int) -> FunctionType:
    co = fn.__code__
    co_flags = co.co_flags & ~HAS_VARSTUFF
    co_args : tuple
    if hasattr(co, "co_posonlyargcount"):
        co_args = (
            nargs, 0,
            0, co.co_nlocals, co.co_stacksize,
            co_flags, co.co_code, co.co_consts, co.co_names,
            co.co_varnames, co.co_filename, co.co_name,
            co.co_firstlineno, co.co_lnotab, co.co_freevars,
            co.co_cellvars
        )
    else:
        co_args = (
            nargs, 0, co.co_nlocals,
            co.co_stacksize, co_flags, co.co_code, co.co_consts,
            co.co_names, co.co_varnames, co.co_filename,
            co.co_name, co.co_firstlineno, co.co_lnotab,
            co.co_freevars, co.co_cellvars)
    new_code = CodeType(*co_args)  # type: ignore
    return FunctionType(new_code, fn.__globals__, fn.__name__, fn.__defaults__, fn.__closure__)

    # we need to insert placeholder nodes for *args and **kwargs
    # we can't call this function normally, otherwise it would try to unpack them
    # instead, let's make python think that args and kwargs are normal variables

[docs]class Tracer(TracerBase): """ ``Tracer`` is the class that implements the symbolic tracing functionality of ``torch.fx.symbolic_trace``. A call to ``symbolic_trace(m)`` is equivalent to ``Tracer().trace(m)``. Tracer can be subclassed to override various behaviors of the tracing process. The different behaviors that can be overridden are described in the docstrings of the methods on this class. """ def __init__(self): super().__init__()
[docs] def create_arg(self, a: Any) -> 'Argument': """ A method to specify the behavior of tracing when preparing values to be used as arguments to nodes in the ``Graph``. By default, the behavior includes: #. Iterate through collection types (e.g. tuple, list, dict) and recursively call ``create_args`` on the elements. #. Given a Proxy object, return a reference to the underlying IR ``Node`` #. Given a non-Proxy Tensor object, emit IR for various cases: * For a Parameter, emit a ``get_attr`` node referring to that Parameter * For a non-Parameter Tensor, store the Tensor away in a special attribute referring to that attribute. This method can be overridden to support more types. Args: a (Any): The value to be emitted as an ``Argument`` in the ``Graph``. Returns: The value ``a`` converted into the appropriate ``Argument`` """ # The base tracer is used to construct Graphs when there is no associated # module hierarchy, so it can never create parameter references. # The default tracer adds the ability to refer to parameters when # tracing modules. if isinstance(a, torch.nn.Parameter): for n, p in self.root.named_parameters(): if a is p: return self.create_node('get_attr', n, (), {}) raise NameError('parameter is not a member of this module') elif isinstance(a, torch.Tensor): for n, p in self.root.named_buffers(): if a is p: return self.create_node('get_attr', n, (), {}) # For NamedTuple instances that appear literally as args, we emit # a node to construct the NamedTuple and use that Node as the argument. if isinstance(a, tuple) and hasattr(a, '_fields'): args = tuple(self.create_arg(elem) for elem in a) return self.create_node('call_function', a.__class__, args, {}) # Tensors do not have a reliable string repr() from which they can be # constructed (and we probably don't want to rely on that, either), so # for any constant Tensor values we encounter, first search for if they # are an attribute of some module in the module hierarchy. If so, emit # a get_attr to retrieve that tensor. Otherwise, we'll store away the # tensor value into a special attribute on the Module s.t. we can # retrieve it with a get_attr. if isinstance(a, (torch.Tensor, ScriptObject)): qualname : Optional[str] = self.tensor_attrs.get(a) # Tensor was not found in the Module hierarchy, stow it away in a # special attribute and set the qualname to refer to that if not qualname: i = 0 while True: qualname = f'_tensor_constant{i}' if not hasattr(self.root, qualname): break i += 1 setattr(self.root, qualname, a) return self.create_node('get_attr', qualname, (), {}) return super().create_arg(a)
[docs] def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool: """ A method to specify whether a given ``nn.Module`` is a "leaf" module. Leaf modules are the atomic units that appear in the IR, referenced by ``call_module`` calls. By default, Modules in the PyTorch standard library namespace (torch.nn) are leaf modules. All other modules are traced through and their constituent ops are recorded, unless specified otherwise via this parameter. Args: m (Module): The module being queried about module_qualified_name (str): The path to root of this module. For example, if you have a module hierarchy where submodule ``foo`` contains submodule ``bar``, which contains submodule ``baz``, that module will appear with the qualified name ``foo.bar.baz`` here. """ return m.__module__.startswith('torch.nn') and not isinstance(m, torch.nn.Sequential)
[docs] def path_of_module(self, mod : torch.nn.Module) -> str: """ Helper method to find the qualified name of ``mod`` in the Module hierarchy of ``root``. For example, if ``root`` has a submodule named ``foo``, which has a submodule named ``bar``, passing ``bar`` into this function will return the string "foo.bar". Args: mod (str): The ``Module`` to retrieve the qualified name for. """ for n, p in self.root.named_modules(): if mod is p: return n raise NameError('module is not installed as a submodule')
[docs] def call_module(self, m: torch.nn.Module, forward: Callable[..., Any], args : Tuple[Any, ...], kwargs : Dict[str, Any]) -> Any: """ Method that specifies the behavior of this ``Tracer`` when it encounters a call to an ``nn.Module`` instance. By default, the behavior is to check if the called module is a leaf module via ``is_leaf_module``. If it is, emit a ``call_module`` node referring to ``m`` in the ``Graph``. Otherwise, call the ``Module`` normally, tracing through the operations in its ``forward`` function. This method can be overridden to--for example--create nested traced GraphModules, or any other behavior you would want while tracing across ``Module`` boundaries. ``Module`` boundaries. Args: m (Module): The module for which a call is being emitted forward (Callable): The forward() method of the ``Module`` to be invoked args (Tuple): args of the module callsite kwargs (Dict): kwargs of the module callsite Return: The return value from the Module call. In the case that a ``call_module`` node was emitted, this is a ``Proxy`` value. Otherwise, it is whatever value was returned from the ``Module`` invocation. """ module_qualified_name = self.path_of_module(m) if not self.is_leaf_module(m, module_qualified_name): return forward(*args, **kwargs) return self.create_proxy('call_module', module_qualified_name, args, kwargs)
[docs] def create_args_for_root(self, root_fn, is_module): """ Create ``placeholder`` nodes corresponding to the signature of the ``root`` Module. This method introspects root's signature and emits those nodes accordingly, also supporting ``*args`` and ``**kwargs``. """ # In some cases, a function or method has been decorated with a wrapper # defined via ``functools.wraps``. In this case, the outer code object # will likely not contain the actual parameters we care about, so unwrap # the function to get to the innermost callable. fn_for_analysis = inspect.unwrap(root_fn) co = fn_for_analysis.__code__ total_args = co.co_argcount + co.co_kwonlyargcount names_iter = iter(co.co_varnames) args : List[Any] = [] skip_arg_idx = 0 if is_module: if total_args == 0: raise RuntimeError('``self`` argument cannot be part of *args expansion!') skip_arg_idx = 1 next(names_iter) # skip self args.append(self.root) sig = inspect.signature(fn_for_analysis) def proxy_placeholder(name: str): if name[0] == '*': default = () # type: ignore else: param = sig.parameters[name] default = () if param.default is inspect.Parameter.empty else (param.default,) # type: ignore return self.create_proxy('placeholder', name, default, {}, type_expr=fn_for_analysis.__annotations__.get(name, None)) args.extend(proxy_placeholder(next(names_iter)) for _ in range(skip_arg_idx, total_args)) if co.co_kwonlyargcount > 0 or co.co_flags & HAS_VARSTUFF: # TODO: type annotations for *args and **kwargs if co.co_flags & inspect.CO_VARARGS: args.append(proxy_placeholder('*' + next(names_iter))) if co.co_flags & inspect.CO_VARKEYWORDS: args.append(proxy_placeholder('**' + next(names_iter))) root_fn = _patch_function(root_fn, len(args)) return root_fn, args
[docs] def trace(self, root: Union[torch.nn.Module, Callable]) -> Graph: """ Trace ``root`` and return the corresponding FX ``Graph`` representation. ``root`` can either be an ``nn.Module`` instance or a Python callable. Args: root (Union[Module, Callable]): Either a ``Module`` or a function to be traced through. Returns: A ``Graph`` representing the semantics of the passed-in ``root``. """ if isinstance(root, torch.nn.Module): self.root = root fn = type(root).forward else: self.root = torch.nn.Module() fn = root self.graph = Graph() # When we encounter a Tensor value that's not a parameter, we look if it # is some other attribute on the model. Construct a dict mapping Tensor # values to the qualified name here for efficiency. This is used downstream # in create_arg self.tensor_attrs : Dict[torch.Tensor, str] = {} def collect_tensor_attrs(m : torch.nn.Module, prefix_atoms : List[str]): for k, v in m.__dict__.items(): if isinstance(v, (torch.Tensor, ScriptObject)): self.tensor_attrs[v] = '.'.join(prefix_atoms + [k]) for k, v in m.named_children(): collect_tensor_attrs(v, prefix_atoms + [k]) collect_tensor_attrs(self.root, []) assert isinstance(fn, FunctionType) fn, args = self.create_args_for_root(fn, isinstance(root, torch.nn.Module)) orig_call = torch.nn.Module.__call__ orig_getattr = torch.nn.Module.__getattr__ parameter_proxy_cache = {} # Reduce number of get_attr calls # Method dispatch on parameters is not recorded unless it's directly used. # Thus, we need to insert a proxy when __getattr__ requests a parameter. def module_getattr_wrapper(mod, attr): attr_val = orig_getattr(mod, attr) if isinstance(attr_val, torch.nn.Parameter): for n, p in self.root.named_parameters(): if attr_val is p: if n not in parameter_proxy_cache: parameter_proxy_cache[n] = self.create_proxy('get_attr', n, (), {}) return parameter_proxy_cache[n] return attr_val def module_call_wrapper(mod, *args, **kwargs): def forward(*args, **kwargs): return orig_call(mod, *args, **kwargs) return self.call_module(mod, forward, args, kwargs) try: # Seems to be a mypy limitation: https://github.com/python/mypy/issues/2427 torch.nn.Module.__getattr__ = module_getattr_wrapper # type: ignore torch.nn.Module.__call__ = module_call_wrapper self.create_node('output', 'output', (self.create_arg(fn(*args)),), {}, type_expr=fn.__annotations__.get('return', None)) finally: torch.nn.Module.__call__ = orig_call torch.nn.Module.__getattr__ = orig_getattr # type: ignore return self.graph
[docs]def symbolic_trace(root : Union[torch.nn.Module, Callable]) -> GraphModule: """Symbolic tracing API Given an ``nn.Module`` or function instance ``root``, this function will return a ``GraphModule`` constructed by recording operations seen while tracing through ``root``. Args: root (Union[torch.nn.Module, Callable]): Module or function to be traced and converted into a Graph representation. Returns: GraphModule: a Module created from the recorded operations from ``root``. """ return GraphModule(root if isinstance(root, torch.nn.Module) else torch.nn.Module(), Tracer().trace(root))

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources